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1 Introduction

One of the consequences of the COVID-19 pandemic has been the rapid development of math-
ematical epidemiology. Currently, hundreds of various mathematical models of the epidemic
development are known. Compartmental models are the most widespread among them, which
involve the division of the entire population into parts (compartments), which differ in their epi-
demiological state. The source of this trend is the SIR model proposed by W. Kermack and A.
McKendrick (Kermack, 1927). In this model, the population consists of susceptible, infectious,
and recovered groups, and the mathematical model is a system of differential equations that
describes the transition of individuals from the susceptible group to the infectious group and
then recovered. Its natural extension is the SIRD model, which also introduces the deceased
compartment (Bailey, 1975).

The main drawback of these models, as well as the similar SIS and SIRS models, is the ignor-
ing of the latency period, during which individuals have been infected, but are not yet infectious
themselves. As a result, the SEIR model was developed, to which the exposed compartment
was added. This model, as well as its extended version SEIRD, which takes into account the
deceased, became the basis of modern mathematical epidemiology (see, for example, Hethcote
(2000); Keeling et al. (2007); Krivorotko et al. (2020); Sameni (2020); Krivorotko et al. (2021)).
In particular, the MSEIR model also considers people maternally derived immunity (Almeida et
al., 2019). In Mwalili et al. (2020), authors consider a model that additionally takes into account
patients in whom the disease proceeds in an asymptomatic form, and the SEIRHCD model also
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takes into account compartments of hospitalized and critically ill patients (Krivorotko et al.,
2020, 2021; Unlu et al., 2020).

To describe the spread of an epidemic over a certain territory, partial differential equations
with diffusion terms are used (see, for example, Aristov et al. (2021)). Similar equations are
also used to analyze the distribution of certain population compartments not only in time, but
also by age (Roddam, 2001). Along with continuous models, discrete models are also used,
characterized by a system of recurrent relations (Brauer et al., 2010). In particular, Serovajsky
(2021); Serovajsky et al. (2021); Turar et al. (2021) consider a discrete model with a limited
time spent in contact and patient compartments. We also note numerous stochastic models of
epidemiology (see, for example, Bailey (1975); Andersson (2000)), as well as agent models (see,
for example, Krivorotko et al. (2021, 2022)).

Models that take into account vaccination arouse particular interest. In the simplest case,
vaccinated susceptible individuals are directly transferred to the recovered compartment (De La
Sen et al., 2010). In the SIRV (Scherer, 2002) and SEIRV (Cai et al., 2018) models, vaccinated
are already considered as an independent population group. In Ghostine et al. (2021), the
SEIRQV model is proposed, with additional compartment of people in quarantine. In Parolinia
et al. (2021), the SUIHTER model also includes compartments of undetected and hospitalized
patients, and separately takes into account people who received one and two doses of the vaccine.
In the SVEIAHR model, vaccination is studied in the presence of three compartments of patients
that are symptomatic and asymptomatic infected, as well as hospitalized Diagnea et al. (2021).

In Serovajsky et al. (2022), continuous and discrete models are proposed with compartments
of vaccinated and contact vaccinated people with a limited time spent in all compartments of
patients and contacts, which are generalizations of the models considered in Serovajsky (2021);
Serovajsky et al. (2021); Turar et al. (2021). However, in these models, the rate of vaccination
is assumed to be constant and independent of the state of the epidemic. In this paper, it is
proposed to consider the rate of vaccination depending on the number of sick people at a given
time.

In addition, we propose, as it seems to us, a more realistic division of the population into
groups compared to known works. In particular, it seems more natural to interpret the compart-
ment E as contact; identification of three compartments of patients, among which undetected
patients are not included in official statistics, and hospitalized compartments is not source of
infection; dividing vaccinated people into compartments of healthy people and those who were
in contact with sick people. These, in turn, predetermines the clarification of intergroup transi-
tions. A feature of this article is also the analysis based on two types of models – discrete and
continuous, which expands the possibilities of mathematical modeling.

The paper contains 7 sections. The first of them is introductory. The second section describes
the assumptions made, in particular, it provides a list of compartments into which the population
is divided, as well as a list of intercompartment transitions taken into account. The third
and fourth sections describe, respectively, the discrete and continuous models of the considered
process, and also establish their most important qualitative properties. The fifth section presents
the main results of the calculation and also gives their practical interpretation. As an example,
information about the spread of the COVID-19 epidemic in Kazakhstan is used. The sixth
section is devoted to estimation of the model parameters’ influence on the course of the epidemic
based on computer analysis of both models. Finally, the last section summarizes the results of
the study.

2 Used assumptions

As already noted, compartmental models differ primarily in the choice of population compart-
ments. The corresponding mathematical models characterize the change in the size of these
compartments over time. In our case, nine compartments are considered. First of all, it is
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susceptible, i.e., healthy, who can become ill after contact with the sick. This compartment is
invariably present in all compartmental models, starting with SIR. S(t) and Sk will denote the
number of susceptible individuals at time t for a continuous model and on the k-th day for a
discrete model. Similar designations will be used for other population compartments.

The second compartment consists of contacted, i.e., people who have been in contact with
sick people, as a result of which they can infect, although they do not necessarily infect. Since
this compartment is close to the exposed compartment present in the SEIR model, we will denote
the corresponding value as E.

Then there are three compartments of patients, in particular, undetected, isolated and hos-
pitalized, the number of which is denoted, respectively, by U , I and H. The consideration of
just such compartments is explained by the following circumstances. The fundamental difference
between undetected patients (as a rule, these are patients in whom the disease proceeds in an
asymptomatic form, as well as mildly ill patients who have not consulted a doctor) from other
patients is that they are not included in the official statistics of the disease. Consequently, in
the solving of inverse problems to identify the system, we do not have any information at all,
unlike other categories of patients. The fundamental difference between hospitalized patients
and other patients is that they are under the supervision of doctors, which means that they are
practically do not act as sources of infection. Finally, isolated is, as a rule, slightly ill, consulting
a doctor and undergoing treatment at home. Like hospitalized, they are included in the official
statistics of the disease. However, unlike the latter, they can be a source of infection, although
to a lesser extent compared to undetected, which largely continue to lead a normal life, and
therefore pose the greatest threat to others.

The next population compartment is immunized. It is made up of people who have already
been ill and have immunity. Since this compartment largely corresponds to the recovered com-
partment present in many models, its size is denoted by R. The use of the term “immunized”
instead of “recovered” seems to be preferable, since the main thing here is not that the person
recovered, but that he, being in this compartment, can no longer get sick. When generalizing the
proposed model, it is possible to provide for the possibility of re-infection. In this case, a person,
remaining recovered, no longer has immunity and, in fact, should be classified as susceptible.

Subsequently the deceased, which have a natural meaning, are also taken into account. Their
number is denoted by D.

Finally, vaccinated and contact vaccinated are also considered, the numbers of which are
denoted by V and C, respectively. Healthy people who have been vaccinated belong to the
vaccinated compartment, and vaccinated people who have had a contact with sick people belong
to the contact vaccinated compartment. This takes into account that vaccination does not
provide complete protection against the disease, i.e., the vaccinated people fall ill, although less
likely than the unvaccinated, and in the case, the disease proceeds in them in a milder form.

The second most important characteristic of compartmental models of epidemiology after
the list of population compartments is the list of acceptable intercompartment transitions. For
the models under consideration, the transitions indicated in Figure 1.

According to the accepted assumptions, susceptible can contact with patients (to a greater
extent with undetected, to a lesser extent with isolated ones) and be vaccinated. The vaccinated
may also come into contact with infected people. Contacted people may become ill in some
form or not at all. Contact vaccinated can get sick and move into the undetected and isolated
compartments (less likely than susceptible). A patient in any form either recovers, or his disease
becomes more severe. Hospitalized may die. It is assumed that after some time a person from
any compartment of contact and patients leaves it, moving to another compartment (contacted
will either get sick in one form or another, or will certainly not get sick; hospitalized will either
recover or die, etc.). Time spent in compartments contacted, contact vaccinated, undetected,
isolated and hospitalized are denoted, respectively, as ne, nc, nu, ni and nh.

Further two models are used to describe the process under study. They differ not only in
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Figure 1: Characteristics of intercompartment transitions

the nature of the independent variable, i.e. time (continuous or discrete value), but also in the
way they take into account the limited time spent in contact and patient compartments.

3 Discrete mathematical model of the epidemic propagation
with vaccination

As already noted, the discrete model assumes the determination of all Zk values characterizing
the number of individuals corresponding to compartment Z on the kth day. At the same time,
the number of people belonging to all compartments of contacts and patients can be acquired as
sum of numbers, in each of the days of being in this compartment. Thus, the following equalities
hold

Zk =

nz∑
j=1

zjk. (1)

Here, zjk denotes the number of people in compartment Z at time k on the jth day of being
in this compartment, j = 1, . . . , nz. Here Z can take the values E,C,U, I,H. The symbol z has
a similar meaning. In this case, each individual of the jth day of being in the compartment Z
passes to the category of the j + 1-th day of being in the compartment Z when in one day, if he
was not in the last day of being in this compartment, which corresponds to the equalities

zj+1
k+1 = zjk, j = 1, 2, ...nz − 1, (2)

where z can take the values e, c, u, i, h.
Susceptible individuals can leave their compartment either through contact with the sick or

after vaccinations. On the other hand, this compartment is replenished with those contacted
who will certainly not get sick. Thus, the number of susceptible on the next day is equal to
their number on the previous day, minus those who were vaccinated and who had contact with
patients on that day, plus those contacts about whom it can be said with certainty that they will
not get sick up to a day being considered. Obviously, the latter is about the contacted of being
in the compartment last day. At the same time, the number of people who are naturally vacci-
nated at a given time is directly proportional to the number of susceptible. The corresponding
coefficient of proportionality depends on the number of registered patients (to a greater extent
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from hospitalized, to a lesser extent from isolated ones), because it is the incidence rate that
encourages people to get vaccinated. It is clear that the number of susceptible who had contact
with patients at a given time is also proportional to the existing number of susceptible; and the
corresponding coefficient depends on the number of active carriers of the disease (to a greater
extent from undiagnosed, to a lesser extent from isolated ones). As a result, we obtain the
equality

Sk+1 = Sk −
vhHk + viIk

N
Sk −

kuUk + kiIk
N

Sk + pese
ne
k . (3)

Here, the parameters vh and vi characterize the degree of influence of the number of hospi-
talized and isolated people on the desire of people to be vaccinated; and ku and ki reflect the
contagiousness of undetected and isolated patients. The division by the total population number
is carried out for reasons of normalization. Otherwise, the numbers of two compartments are
multiplied, which are sufficiently large values. The pes parameter is the proportion of contacts
of last day being in this compartment, moving into the compartment of susceptible, i.e. not
sick. Everywhere below, pyz denote the proportion of individuals from compartment Y on the
last day of being in this compartment, moving into compartment Z.

Similarly, the number of vaccinated on the following day is the sum of their number on the
previous day, the number of susceptible ones who were vaccinated that day, and the number of
contact vaccinated people who can now be said to certainly not get sick, minus the number of
vaccinated who had contact with infection on a given day. As a result, by analogy with formula
(3), we obtain the equality

Vk+1 = Vk +
vhHk + viIk

N
Sk −

kuUk + kiIk
N

Vk + pcvc
nc
k . (4)

The number of all contact and infected compartments on the next day is equal to their
number on the previous day plus the number of people who entered this compartment on new
day, minus the number of people who left the compartment on the previous day. Thus, we have

Zk+1 = Zk + z1k+1 − znz
k , (5)

where Z can take the values E,C,U, I,H.

The number of immunized at a subsequent day is equal to their number on the previous day
plus the number of patients in all compartments who recovered on the previous day. As a result,
we obtain the equality

Rk+1 = Rk + puru
nu
k + piri

ni
k + phrh

nh
k . (6)

The number of deaths at a subsequent time point is equal to their number on the previous
day plus the number of deceased on that day

Dk+1 = Dk + phdh
nh
k . (7)

Relations (1) – (7) are supplemented by formulas for determining the number of new con-
tacts and patients, i.e., the number of relevant compartments of people related to the first day
they were in the compartments. In particular, the number of contacts, both vaccinated and
unvaccinated, is exactly equal to the number of vaccinated and susceptible, respectively, who
had contact with patients on the previous day. Thus, there are the equalities

e1k+1 = (kuUk + kiIk)
Sk

N
, c1k+1 = (kuUk + kiIk)

Vk

N
. (8)
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The number of new undetected is the sum of the number of both compartments of contacts
of the last day of being in the compartment, in which the disease developed in an undetected
form

u1k+1 = peue
ne
k + pcuc

nc
k . (9)

The number of new isolated contacts is the sum of the number of both compartments of
contacts of the last day of being the compartment who fell ill with an isolated form of the disease,
as well as the number of undiagnosed contacts of the last day of being in the compartment in
whom the disease was detected

i1k+1 = peie
ne
k + pcic

nc
k + puiu

nu
k . (10)

The number of new hospitalizations is the sum of the number of contacts and isolated patients
of the last day of being in the compartment, who developed a severe form, as a result of which
they were hospitalized

h1k+1 = pehe
ne
k + pihi

ni
k . (11)

The initial states of the system Z0, i.e. S0, E0, U0, V0, C0, I0, H0, R0, D0 are considered to
be known. For all forms of contact people and patients the distribution by days of being in
compartments at the initial moment of time is considered uniform for simplicity, i.e. we have
the equalities

zj0 =
Z0

nz
, j = 1, ..., nz, (12)

where z takes the values e, c, u, i, h.

Note that the parameters of the system have some relations. In particular, the sum of the
size of all population compartments at the initial moment of time (including those who died from
a given disease) is equal to the total population number, which corresponds to the condition

S0 + V0 + E0 + C0 + U0 + I0 + H0 + R0 + D0 = N. (13)

The proportions of the number of all contact and patient compartments passing into one or
another compartment are related by natural factors.

pes + peu + pei + peh = 1, pcv + pcu + pci = 1,

pui + pur = 1, pih + pir = 1, phr + phd = 1.
(14)

For vaccinated contacts, the time spent in the compartment is assumed to be the same as
for unvaccinated contacts, i.e.

nc = ne. (15)

The contagiousness of undetected patients is higher than that of isolated ones, which corre-
sponds to the inequality

ku > ki. (16)

The degree of influence of the number of hospitalized patients on the rate of vaccination is
higher than the number of isolated, which corresponds to the inequality

vi < vh. (17)
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Those vaccinated are significantly less likely to get sick than those who are susceptible, in
line with the inequalities

pcu < peu, pci < pei. (18)

Vaccinated people are more likely not to get sick at all and less likely to become isolated

pci < pcu < pcv. (19)

The above formulas constitute a discrete model of the epidemic development with vaccina-
tion.

Theorem 1. The following properties are fulfilled for the discrete mathematical model:
i) the sequences Rk and Dk are increasing;
ii) the following equality holds

Sk + Vk + Ek + Ck + Uk + Ik + Hk + Rk + Dk = N, k = 1, 2, ...; (20)

iii) the system has an equilibrium position such that

E = 0, U = 0, C = 0, I = 0, H = 0. (21)

To prove the first property, it suffices to pay attention to the fact that the increment of the
functions of the discrete argument R and D (the difference between their values on the next
and previous day) is positive because of equalities (6) and (7). To prove the second property,
it suffices to add equalities (3) – (7) together, taking into account conditions (8) – (11), (14)
and make sure that the sum of the values of all functions at the next and previous time is the
same. This value is equal to N by equality (13). To verify the validity of the third assertion,
it is required to pass to the limit for k → ∞ in the available recurrence relations under the
assumption that limits of the sequences of the considered quantities exist, taking into account
the fact that the limits of each considered nine functions coincide at the next and the previous
moment of time.

Presented results have a rather natural meaning. The monotonous increase in the number
of immunized and dead is explained by the fact that none of these compartments of people
decreases, i.e., according to the accepted assumptions, the immunized will no longer get sick,
and the dead, of course, remain so. The second statement is equally natural: in the balance of
natural birth and death rates (i.e. as many were born in a unit of time, that many died naturally
during that time), as well as the isolation of the population (the absence of inflow and outflow
of the population from outside), the total population does not change. Finally, when the system
reaches the indicated equilibrium position, it means that the epidemic ends with time, i.e., the
number of all compartments of contacts and patients tends to zero over time: all contacts will
either get sick or not get sick, and all patients will either recover or die.

4 Continuous mathematical model of the epidemic propagation
with vaccination

The continuous mathematical model is derived under the same assumptions as the discrete
model described above. The state of the system is described by the same functions as before,
but depending on the continuously changing time t. At the same time, the previously adopted
designations remain valid.
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The change in the number of susceptibles is due to their decrease due to vaccination and the
fact that some part of the susceptible came into contact with the sick, and an increase, since
some of the contacts do not get sick. As a result, we have a differential equation

dS(t)

dt
= −vhH(t) + viI(t)

N
S(t)− kuU(t) + kiI(t)

N
S(t) + pes

E(t)

ne
. (22)

The first and second terms on its right side coincide with the corresponding summands
of formula (3). According to the last term, the longer the time ne of being in the contact
compartment, the fewer of them (those who did not get sick) will return to the susceptible
compartment per time unit. Thus, the last terms in equalities (3) and (22) have the same
meaning, although expressed in different ways.

The change in the number of vaccinated is due to their decrease because some of them
encountered the infection, and the increase due to vaccination and the fact that part of the
contact vaccinated does not fall ill. The corresponding quantities are determined in the same
way as in the previous formula. As a result, by analogy with equality (4), we obtain the equation

dV (t)

dt
=

vhH(t) + viI(t)

N
S(t)− kuU(t) + kiI(t)

N
V (t) + pcv

C(t)

nc
. (23)

The change in the number of contacts, both unvaccinated and vaccinated, increases due to,
respectively, susceptible and vaccinated, who had contact with patients, and decreases due to
the limited time spent in these compartments. Thus, we have the equalities

dE(t)

dt
=

kuU(t) + kiI(t)

N
S(t)− E(t)

ne
, (24)

dC(t)

dt
=

kuU(t) + kiI(t)

N
V (t)− C(t)

nc
, (25)

similar to formula (5), when Z takes the values E and C, taking into account formulas (8).
The number of undetected increases due to the disease of both contact compartments and

decreases due to the limited time spent in this compartment. As a result, we obtain the equation

dU(t)

dt
= peu

E(t)

ne
+ pcu

C(t)

ne
− U(t)

nu
, (26)

which is similar to equality (5) with Z = U considering formula (9).
The number of isolated patients increases due to the disease of both contact compartments

and the detection of the disease in some of the undetected patients and decreases due to the
limited time spent in this compartment. This corresponds to the equality

dI(t)

dt
= pei

E(t)

ne
+ pci

C(t)

nc
+ pui

U(t)

nu
− I(t)

ni
, (27)

which is similar to formula (5) with Z = I, considering condition (10).
The number of hospitalized increases due to the severe illness of some of the contacts and

the hospitalization of some of the isolated patients and decreases due to the limited time spent
in this compartment. As a result, we obtain the equation

dH(t)

dt
= peh

E(t)

ne
+ pih

I(t)

ni
− H(t)

nh
, (28)

which is similar to formula (5) with Z = H, considering condition (11).
The number of immunized is increasing due to the recovery of patients of all categories.

Then, by analogy with formula (6), we have the equation

dR(t)

dt
= pur

U(t)

nu
+ pir

I(t)

ni
+ phr

H(t)

nh
. (29)
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The number of deceased increases due to the death of a part of the hospitalized, which
corresponds to the equation

dD(t)

dt
= phd

H(t)

nh
, (30)

similar to formula (7).
The system of differential equations (22) – (30) is supplemented by the initial conditions

Z(0) = Z0, (31)

where Z takes the values S, V,E,C, U, I,H,R,D. Formulas (22) – (31) are a continuous model
of the epidemic development with vaccination. It is assumed that relations (13) – (19) are also
satisfied for continuous model.

The following assertion is true, which is an analogue of Theorem 1.

Theorem 2. The following properties are fulfilled for the continuous mathematical model of the
epidemic propagation with vaccination:
i) functions R and D are increasing;
ii) the system under consideration has a first integral characterized by the equality

S(t) + V (t) + E(t) + C(t) + U(t) + I(t) + H(t) + R(t) + D(t) = N, t > 0; (32)

iii) the system has an equilibrium position such that

E = 0, U = 0, C = 0, I = 0, H = 0. (33)

Here the first condition follows from the positiveness of the corresponding derivatives in
equalities (29) and (30). To prove the validity of the second assertion, it suffices to add all
equalities (22) – (30) taking into account conditions (14). To substantiate the third assertion, it
suffices to equate the expressions on the right-hand sides of the existing equations to zero and
analyze the resulting system of algebraic equations.

5 Numerical analysis of the mathematical models of the
epidemic propagation with vaccination

The quantitative analysis of both models was carried out at the same parameter values, and
the continuous model was implemented using the 4th order Runge–Kutta method. The fol-
lowing number of days spent in groups was assumed: ne = 14, nu = 3, ni = 5, nh = 7,
nc = ne = 14. The coefficients of the equations take the following values as main set: ku = 3.18,
ki = 0.171, vh = 0.3, vi = 0.01, pes = 0.679, peu = 0.154, pei = 0.145, peh = 0.022,
pcv = 0.9, pcu = 0.05, pci = 0.05, pui = 0.03, pur = 0.97, pih = 0.021, pir = 0.979,
phr = 0.982, phd = 0.018. The calculations were carried out at the initial stage of the epi-
demic, and N = 18699640, which corresponded to the population of Kazakhstan at the time of
the start of the COVID-19 epidemic. The change in the numbers of all considered population
compartments obtained as a result of the calculation is shown in Figure 2, here and everywhere
below, the red curves correspond to the discrete model, and the blue curves to the continuous
one. Figure 3 shows the total number of all infected people, as well as the number of recovered,
deceased and vaccinated on a given day.

First of all, we note that both models give close results. This can be explained by the fact
that both models were obtained on the basis of the same hypotheses. However, these results
do not completely match. In particular, the curves for the continuous model turn out to be
smoother than those for the discrete model. In addition, there are certain deviations in the
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Figure 2: Change in the sizes of population compartments for the main set of parameters

Figure 3: The number of infected, recovered, dead and vaccinated on a given day

maximum values of individual functions and the time to reach these values. These discrepancies
are explained by the fact that individual effects in these models are described by different means.

Calculations show that five out of nine functions tend to zero over time. They correspond to
all groups of contact and patients. The remaining four functions reach the equilibrium position,
taking positive values. The results obtained are consistent with the statements of the theorems
formulated above and indicate that the epidemic ends eventually.

Among the most important quantitative characteristics of the system there are the duration
of the epidemic (up to the point in time at which the number of all simultaneously ill is close
enough to zero), the peak time of the epidemic (the point in time at which the number of
all simultaneously ill reaches its maximum value), the total number of infected, recovered and
deceased at the end of the epidemic and the maximum number of patients at a time. The
relevant information for the specified calculation option is given in Table 1.

Table 1: The most important characteristics of the system for the main variant of calculation

Discrete Model Continuous Model

Peak time of the epidemic 409 372
The maximum number of
patients at the same time 275620 (1.47%) 248302 (1.33%)
Epidemic end time 1070 1144
Total number of sick people
and % of the total population 9598590 (51.33%) 9659525 (51.66%)
Total number of recovered
and % of the total number of sick people 9585214 (99.86%) 9646064 (99.86%)
Total number of deceased and
% of the total number of sick people 13376 (0.14%) 13460 (0.14%)

As it can be seen from the these results, according to the discrete model, the epidemic reaches

214



S. SEROVAJSKY et al.: MATHEMATICAL MODELING OF EPIDEMIC PROPAGATION...

its peak about a month later than according to the continuous model (difference is 9.9%), and
the maximum number of sick people at the same time turns out to be more by 27.3 thousand
people (difference is 11%). At the same time, the end of the epidemic comes about 2.5 months
earlier than according to the continuous model (discrepancy is 6.46%), and the total number
of sick people and recoveries is less by about 60 thousand people (difference is 0.63% in both),
the total number of deceased is less by 84 people (difference is 0.62%). Thus, according to the
discrete model, the epidemic is more intense, as long as there is a higher value of the maximum
incidence with a shorter duration of the epidemic.

6 Analysis of the influence of system parameters

We investigate the influence of individual parameters on the course of the process. In particular,
Table 2 describes the effect of the ku contagiousness coefficient of undiagnosed patients. Here
and in whole paper, d-model denotes the discrete model, and c-model denotes the continuous
model. As it can be seen from the table, with an increase in the contagiousness coefficient, both
the peak time and the duration of the epidemic are reduced, and both the maximum number of
patients at a time and the total number of those who have been ill increase, i.e. the epidemic
is intensifying. At the same time, according to both models, these changes have practically no
effect on the ratio between the recovered and the deceased (about 0.14% of the number of cases
die). We also note that the increase in the contagiousness coefficient from 2.88 to 3.48, i.e. on
20,8% leads to a decrease in the peak time and duration of the epidemic, respectively by 29.59%
and 22.28% for a discrete model, and by 31.52% and 27.27% for the continuous model. At the
same time, the maximum number of simultaneously ill people and the total number of recovered
patients increase by 0.84% and 0.72%, respectively, for the discrete model, and by 11.39% and
11.56% for the continuous model (here and in the analysis of subsequent tables, the percentage
of people count is taken from the total population size).

Table 3 describes the impact of the contagiousness coefficient ki of isolated patients. Actually,
it affects the same way as the contagiousness rate of undiagnosed patients. However, increasing
this parameter by 281% leads to a decrease in the peak time and duration of the epidemic,
respectively, by 14.09% and 12.11% for the discrete model, and on 17.23% and 11.60% for the
continuous model. At the same time, the maximum number of simultaneously ill people and
the total number of recovered patients increase by 1.05% and 0.91% of the total population for
the discrete model, and by 6.12% and 6.21% of the total population for the continuous model,
respectively. Mortality again does not undergo any changes and is 0.14%.

Table 4 describes the effect of the parameter vh characterizing the effect of hospitalized
patients on the rate of vaccination. Doubling it had practically no effect not only on mortality,
but also on the time of the peak of the epidemic, and on the maximum number of patients
at the same time. At the same time, the duration of the epidemic decreased by 0.84% for
the discrete model and on 0.87% for the continuous model, and the total number of recovered
patients decreased by 1.72% for the discrete model and 1.71% for the continuous model. Thus,
an increase in the rate of vaccination leads to a reduction in both the duration of the epidemic
and the number of those who have been ill. The influence of a similar parameter associated with
isolated patients is approximately the same, but weaker.

Table 5 and Table 6 characterize the impact of changing the proportion of contacts who
moved to other compartments. According to Table 5, when the parameter peu is increased
by 13.9% with a corresponding decrease in the pes parameter (more contacts get sick in an
undetected form and fewer do not get sick at all), the time of the peak of the epidemic and
its duration decrease, respectively, by 21.18% and by 17.82% for the discrete model, and by
23.08% and 17.53% for the continuous model, while the maximum number of patients and the
total number of recovered patients increase, respectively, by 0.61% and 8.34% for the discrete
model, and by 0.51% and 8.4% for the continuous model. Thus, an increase in the proportion
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of cases in an undiagnosed form due to a decrease in the proportion of those who are not ill
leads to a more intense course of the epidemic (the duration of the epidemic is reduced, but the
incidence increases). According to Table 6, when the parameter pei is increased by 32% with
a corresponding decrease in the parameter peh (more contacts become isolated patients and
fewer are hospitalized), the peak time of the epidemic and its duration decrease, respectively,
by 3.91% and 1.3% for discrete model, and by 3.68% and 1.3% for continuous model, while the
maximum number of patients and the total number of recovered patients increase by 0.12% and
5.33%, respectively, for the discrete model, and by 0.1% and 5.32% for the continuous model.
Thus, an increase in the proportion of those isolated with a decrease in the proportion of those
hospitalized again leads to a more intense course of the epidemic (although to a lesser extent
than after previous changes). This can be explained by the fact that in this case there are fewer
sources of infection.

Table 2: Influence of the contagiousness coefficient of undiagnosed patients

peak time of the maximum number duration of the number of
ku epidemic in days simultaneously ill epidemic in days recoveries

d-model c-model d-model c-model d-model c-model d-model c-model

2.88 490 460 195696 179107 1239 1324 8398573 8447761
3.18 409 372 275620 248302 1070 1144 9598590 9659525
3.48 345 315 353940 314178 963 1032 10528004 10597509

Table 3: Influence of the contagiousness coefficient of isolated patients

peak time of the maximum number duration of the number of
ki epidemic in days simultaneously ill epidemic in days recoveries

d-model c-model d-model c-model d-model c-model d-model c-model

0.071 440 412 236356 212193 1148 1224 8987477 9040028
0.171 409 372 275620 248302 1070 1144 9598590 9659525
0.271 378 341 315671 283280 1009 1082 10131894 10200517

Table 4: Influence of the parameter vh

duration of the epidemic number of recoveries
vh in days in % of the population

d-model c-model d-model c-model

0.02 1074 1150 9763287 9823445
0.03 1070 1144 9598590 9659525
0.04 1065 1140 9440601 9502245

Table 5: Influence of the proportion of contacts who become undetected patients

peak time of the maximum number duration of the number of
ku epidemic in days simultaneously ill epidemic in days recoveries

d-model c-model d-model c-model d-model c-model d-model c-model

0.669 458 429 220245 199973 1190 1272 8760111 8814914
0.679 409 372 275620 248302 1070 1144 9598590 9659525
0.689 361 330 333908 296014 978 1048 10320519 10385997
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Table 6: Influence of the proportion of contacts who become isolated patients

peak time of the maximum number duration of the number of
ku epidemic in days simultaneously ill epidemic in days recoveries

d-model c-model d-model c-model d-model c-model d-model c-model

0.071 409 380 265991 238713 1078 1153 9118258 9178938
0.171 409 372 275620 248302 1070 1144 9598590 9659525
0.271 393 366 287406 257818 1064 1138 10113994 10174574

Table 7 describes the impact of the proportion pci of vaccinated contacts who become ill and
isolated. In particular, a fourfold increase in this proportion (with a corresponding decrease in
pcv, the proportion of vaccinated contacts who did not get sick at all), the time characteristics of
the epidemic remained practically unchanged, and the maximum number of sick and the number
of recoveries decreased by less than 0.01%.

Table 7: Influence of the proportion of vaccinated contacts who become isolated patients

maximum number number of recoveries
pci simultaneously ill

d-model c-model d-model c-model

0.02 275668 248342 9606348 9667555
0.05 275620 248302 9598590 9659525
0.08 275572 248263 9591068 9651754

Table 8 evaluates the impact of the proportion of undiagnosed pui patients who were sub-
sequently diagnosed with disease and isolated. A five-fold increase in this parameter had little
effect on the time characteristics of the epidemic (the duration of the epidemic is reduced by
several days). At the same time, the maximum number of sick people decreased by 0.03% for
the discrete model and by 0.04% for the continuous model, and the total number of infected
decreased by 0.19% for both models. According to (14), the sum of the parameters pui and pur
is equal to 1, as a result of which the latter has the opposite effect on the system.

Table 8: Impact of the proportion of undiagnosed patients whose disease was subsequently detected

the maximum number number of recoveries
pui of sick people

d-model c-model d-model c-model

0.01 278882 252297 9616295 9677493
0.03 275620 248302 9598590 9659525
0.05 272256 244335 9580793 9641461

Table 9 contains information on the impact of the proportion of isolated patients who were
subsequently hospitalized pih. An increase in this parameter by six times had practically no
effect on the time characteristics of the epidemic. At the same time, the maximum number of
simultaneously sick people increased by 0.2%, and the total number of sick people increased by
0.45% for both the discrete model and the continuous model. According to (14), the sum of the
parameters pih and pir is equal to 1, because of this the latter has the opposite effect on the
system.
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Table 9: Impact of proportion of isolated patients that were hospitalized

the maximum number number of recoveries
pih of sick people

d-model c-model d-model c-model

0.006 273776 246367 9640764 9640764
0.021 275620 248302 9598590 9659525
0.036 277451 250228 9556832 9617884

Table 10 evaluates the impact of the phd parameter on the proportion of deceased among
hospitalized patients. It affects only the number of deceased during the epidemic. In particular,
increasing this parameter 11 times leads to an increase in the number of deaths 1000% for the
for both models. According to (14), the sum of the parameters phd and phr is equal to 1, as a
result of which the latter has the opposite effect on the system.

Table 10: Impact of the proportion phd of hospitalized became deceased

phd number of deaths
d-model c-model

0.003 2229 2243
0.018 13376 13460
0.033 24522 24677

Let us analyze the influence of the number of days spent in compartments. In particular, in
Table 11 we explore changes of parameter ne, which characterizes the number of days spent in
the contact compartment. With its increase by 2.1 times, the time of the peak of the epidemic
and its duration increase, respectively, by 90.75% and 89.69% for the discrete model and by
75.56% and 83.13% for the continuous model, while the maximum number of sick people and
the total number of recovered patients are reduced by 0.95% and 0.75%, respectively, for the
discrete model, and by 0.91% and 0.94% for the continuous model. Thus, with an increase in
the number of days spent in the contact group, it slightly decreases. It is interesting that the
same change in the number nc of days spent in the compartment of vaccinated contacts has
practically no effect on the time of the peak of the epidemic and the maximum number of sick
people (the difference is in hundredths of a percent) and has an extremely insignificant effect on
the duration of the epidemic (it increases by several days) and the total number of those who
have been ill (it is reduced by about 0.05%).

Table 11: Influence of the number of days spent in the contact compartment

peak time of the maximum number duration of the number of
ku epidemic in days simultaneously ill epidemic in days recoveries

d-model c-model d-model c-model d-model c-model d-model c-model

9 281 270 393111 358888 737 806 9691717 9775080
14 409 372 275620 248302 1070 1144 9598590 9659525
19 536 474 214795 189745 1398 1476 9551573 9599104

Table 12 examines the effect of the number of days spent in the undetected compartment nu.
Doubling this number leads to a reduction in the peak time of the epidemic and the duration
of the epidemic, respectively, by 4.8 times and 3.8 times for the discrete model, and 5.5 times
and 3.7 times for the continuous model. At the same time, the maximum number of patients
at the same time increases, respectively, by 31 and 29 times, respectively, for discrete and
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continuous models, the total number of those who have been ill is 4 times for both models, and
the mortality rate does not change. Thus, this parameter has a strong influence on the intensity
of the epidemic.

Table 12: Effect of the number of days spent in the undetected compartment

peak time of the maximum number duration of the number of
ku epidemic in days simultaneously ill epidemic in days recoveries

d-model c-model d-model c-model d-model c-model d-model c-model

2 1370 1378 18090 17352 3219 3358 3002054 3006504
3 409 372 275620 248302 1070 1144 9598590 9659525
4 287 249 564311 494976 838 911 12191042 12304302

Table 13 shows the characteristics of the epidemic for different values of the number of days
spent in the isolated compartment ni. The results show that an increase in the parameter by
2.3 times leads to a reduction in the peak time of the epidemic and its duration, respectively,
by 62.4% and 61.8% for the discrete model and by 54.8% and 58.6% for the continuous model,
and to an increase in the maximum number of sick people and the total the number of recovered
patients decreases, respectively, by 0.84% and 3.95% for the discrete model and by 0.85% and
4.06% for the continuous model of the total population. Thus, the number of days spent in
the isolated compartment also affects the intensity of the epidemic, but to a lesser extent than
the number of days spent in the undetected compartment. Even less influence is exerted by
the number of days spent in the hospitalized compartment. In particular, the increase in this
parameter by two and a half times did not affect the time to reach the peak of the epidemic, the
duration of the epidemic was reduced by several days, and the maximum number of sick people
and the total number of recoveries increased by about 0.05% and by 2% for both models.

Table 13: Influence of the number of days spent in the isolatied compartment

peak time of the maximum number duration of the number of
ku epidemic in days simultaneously ill epidemic in days recoveries

d-model c-model d-model c-model d-model c-model d-model c-model

3 423 395 199025 176696 1105 1177 9213682 9266085
5 409 372 275620 248302 1070 1144 9598590 9659525
7 380 356 355300 326727 1041 1121 9952327 10025657

Based on the results obtained, it can be concluded that the process is most influenced by
parameters characterizing mortality among hospitalized patients, as well as contagiousness and
the number of days spent in the undetected compartment. In addition, if sufficiently accurate
information about the mortality rate is available, then the characteristics of undetected patients
are practically unknown. In a particular situation, they can be determined by identifying the
system based on available statistical information about the course of the disease.

7 Conclusion

As a result of the study, we can come to the following conclusions. A qualitative and quanti-
tative analysis of the considered mathematical models of the epidemic spread with vaccination
and a limited time spent in compartments shows that under the assumptions made above the
epidemic ends with time. The proposed two models, which differ in the structure and method
of consideration of the time limit of being in compartments, lead to close results so that it is not
possible to give preference to any of the models. With a change in individual parameters of the
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system (an increase in the contagiousness coefficients and the proportion of contacts that were
infected, a decrease in the rate and the number of days spent in compartment of vaccination),
a more intense nature of the epidemic is observed. It means decrease of epidemic duration and
it’s peak time and increase of the amount of simultaneously ill patients.

Based on analysis performed, we indicated the following directions for further research:
1. To predict the course of an epidemic in a specific situation using the considered models,
it is necessary to identify the parameters of models based on the available real information,
as it is done in Krivorotko et al. (2020, 2021); Turar et al. (2021) for epidemiology models
without vaccination. Based on the results of mathematical models identification, based on real
information, it is possible to make a forecast about the development of the epidemic in a specific
situation. 2. In case of modeling of an epidemic development over a longer period, one should
take into account the possibility of re-infection of recovered people, which corresponds to a
transition from compartment R (immunized) to compartment S (susceptible). 3. In case of
modeling of an epidemic development over a longer period, one should take into account the
limited duration of the vaccine, which corresponds to the transition from group V (vaccinated)
to compartment S (susceptible). 4. Taking into account the limited duration of the vaccine, it
is advisable to also consider the possibility of revaccination. 5. In the considered models, the
time spent each compartment is considered fixed. However, in reality, some part of the people
may leave the group either earlier or later. 6. It would also be interesting to study the influence
of random factors on the process. 7. It is of interest to solve system control problems based on
the models used, for example, the choice of vaccination strategy, the possibility of introducing
quarantine and its parameters, etc.
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